Characterization of the gene for factor C, an extracellular signal protein involved in morphological differentiation of Streptomyces griseus.

نویسندگان

  • Z Birkó
  • A Sümegi
  • A Vinnai
  • G van Wezel
  • F Szeszák
  • S Vitális
  • P T Szabó
  • Z Kele
  • T Janáky
  • S Biró
چکیده

The gene encoding factor C (facC), an extracellular signal protein involved in cellular differentiation, was cloned from Streptomyces griseus 45H, and the complete nucleotide sequence was determined. The deduced amino acid sequence was confirmed by HPLC/electrospray ionization-mass spectrometry analysis. The full-length protein consists of 324 amino acids and has a predicted molecular mass of 34,523 Da. The mature extracellular 286 amino acid protein (31,038 Da) is probably produced by cleaving off a 38 amino acid secretion signal sequence. Southern hybridization detected facC in several other Streptomyces strains, but database searches failed to identify a protein with significant homology to factor C. Expression of facC from a low-copy-number vector in S. griseus 52-1 resulted in a phenotypic effect similar to that given by exogenously added factor C protein.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Streptomyces griseus 45H, a producer of the extracellular autoregulator protein factor C, is a member of the species Streptomyces albidoflavus.

Streptomyces griseus strain 45H, isolated in 1960 during a mutagenesis programme on the industrial streptomycin producer S. griseus 52-1, encodes an extracellular, pleiotropic autoregulatory signalling protein, factor C, which stimulates sporulation of S. griseus 52-1 in submerged culture. The facC gene, which codes for factor C, is present in very few streptomycetes and is not present in S. gr...

متن کامل

جداسازی و تأیید مولکولی سریع استرپتومایسس های تولید کننده آنتی بیوتیک استرپتومایسین

Introduction: Streptomyces species are mycelial, aerobic gram-positive bacteria that are isolated from soil and produce a diverse range of antibiotics. Streptomyces griseus produces the antibiotic, streptomycin and forms spores even in a liquid culture. The gene cluster for the production of Streptomycin antibiotic contains strR gene that encodes StrR, a pathway-specific regulator. Then, this p...

متن کامل

A microbial hormone, A-factor, as a master switch for morphological differentiation and secondary metabolism in Streptomyces griseus.

The Gram-positive, soil-inhabiting, filamentous bacterial genus Streptomyces employs gamma-butyrolactones as chemical signalling molecules or microbial hormones, together with their specific receptors, to regulate morphological and/or physiological differentiation. The A-factor regulatory cascade in streptomycin-producing Streptomyces griseus commences aerial mycelium formation and production o...

متن کامل

Characterization and structure of genes for proteases A and B from Streptomyces griseus.

Protease A and protease B are extracellular proteins which are secreted by Streptomyces griseus. The genes encoding protease A (sprA) and protease B (sprB) were isolated from an S. griseus genomic library by using a synthetic oligonucleotide probe. Fragments containing sprA and sprB were characterized by hybridization and demonstration of proteolytic activity in Streptomyces lividans. Each DNA ...

متن کامل

The secreted signaling protein factor C triggers the A-factor response regulon in Streptomyces griseus: overlapping signaling routes.

Members of the prokaryotic genus Streptomyces produce over 60% of all known antibiotics and a wide range of industrial enzymes. A leading theme in microbiology is which signals are received and transmitted by these organisms to trigger the onset of morphological differentiation and antibiotic production. The small gamma-butyrolactone A-factor is an important autoregulatory signaling molecule in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Microbiology

دوره 145 ( Pt 9)  شماره 

صفحات  -

تاریخ انتشار 1999